official WeChat

LI Siyan, ZHONG Yuanqin, CAI Xiaoxuan, ZHOU Changxia, ZHUANG Xiaozhou, MA Zheng, YE Lihe, YANG Peishan, XIONG Jinguang, CHEN Manlian. Determination of 1, 1, 2, 2-tetrachloroethene in human urine by automated headspace-gas chromatography[J]. Occupational Health and Emergency Rescue, 2024, 42(4): 528-532. DOI: 10.16369/j.oher.issn.1007-1326.2024.04.027
Citation: LI Siyan, ZHONG Yuanqin, CAI Xiaoxuan, ZHOU Changxia, ZHUANG Xiaozhou, MA Zheng, YE Lihe, YANG Peishan, XIONG Jinguang, CHEN Manlian. Determination of 1, 1, 2, 2-tetrachloroethene in human urine by automated headspace-gas chromatography[J]. Occupational Health and Emergency Rescue, 2024, 42(4): 528-532. DOI: 10.16369/j.oher.issn.1007-1326.2024.04.027

Determination of 1, 1, 2, 2-tetrachloroethene in human urine by automated headspace-gas chromatography

More Information
  • Received Date: January 29, 2024
  • Objective 

    To establish an automated headspace-gas chromatography method for the determination of 1, 1, 2, 2-tetrachloroethene in human urine.

    Methods 

    A urine sample of 5.00 mL was placed in a 20 mL headspace vial, and 2.0 g of anhydrous sodium sulfite was added before sealing the vial. The vial was placed in an automated headspace sampler and heated at 80 ℃ for 50.00 min to equilibrate. Under these heating conditions, 1, 1, 2, 2-tetrachloroethene in human urine was completely reacted with anhydrous sodium sulfite to form trichloroethylene. The trichloroethylene vapor above the headspace vial was separated by a DB-624 capillary column and detected with a flame ionization detector. Quantification was achieved by plotting a standard curve with the peak area of trichloroethylene and the mass concentration of 1, 1, 2, 2-tetrachloroethane.

    Results 

    The results showed good linear ranges of 1, 1, 2, 2-tetrachloroethene in urine between 0.008 3 and 32.000 mg/L, and the correlation coefficient was higher than 0.999 4. For this method, the limit of detection was 2.5 μg/L, and the lower limit of quantification was 8.3 μg/L; the intra-batch precision was 4.79% to 5.28%, and the inter-batch precision was 4.61% to 6.44%; the average recovery rate was 87.53% to 101.17%.

    Conclusions 

    The automated headspace gas chromatography method for determining 1, 1, 2, 2-tetrachloroethene in human urine was characterized by high sensitivity, good linearity, minimal interference, high precision, and simple sample preparation. It is suitable for measuring the concentration of 1, 1, 2, 2-tetrachloroethene in human urine.

  • [1]
    AVSKY L, BORKHARI A F, ADAMOV A Y, et al. Negative atmospheric pressure chemical ionization of chlorinated hydrocarbons studied by ion mobility spectrometry (IMS) and IMS-MS techniques[J]. J Am Soc Mass Spectrom, 2022, 33(8): 1569-1576. doi: 10.1021/jasms.2c00139
    [2]
    PHILIP WEXLER. Encyclopedia of toxicology[M]. 3 rd ed. USA: Academic Press, 2014: 493-497.
    [3]
    NIOSH. CDC NIOSH pocket guide to chemical hazards: 1, 1, 2, 2-tetrachloroethane[EB/OL]. (2020-09-01)[2023-03-30]. https://www.cdc.gov/niosh/npg/npgd0598.html.
    [4]
    麻忠勤, 江泳. 电石渣清液在四氯乙烷生产中的应用[J]. 氯碱工业, 2020, 56(6): 25-26. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGY202006008.htm
    [5]
    林宁婷. 气相色谱-质谱法测定鞋用橡胶中的1, 1, 2, 2-四氯乙烷和六氯丁二烯[J]. 橡胶科技, 2019, 17(4): 220-225. https://www.cnki.com.cn/Article/CJFDTOTAL-XJKJ201904016.htm
    [6]
    吴健华. 1, 1, 2, 2-四氯乙烷检测方法研究及防控措施探讨[J]. 广东化工, 2023, 50(7): 206-207. https://www.cnki.com.cn/Article/CJFDTOTAL-GDHG202307068.htm
    [7]
    施逸岚, 杨清华, 杨娟, 等. 顶空-气相色谱法测定尿中TCA方法的改进[J]. 职业与健康, 2022, 38(11): 1560-1562. doi: 10.3969/j.issn.1004-1257.2022.11.zyyjk202211028
    [8]
    中华人民共和国国家卫生和计划生育委员会. 职业人群生物监测方法总则: GBZ/T 295-2017[S]. 北京: 中国标准出版社, 2017.
    [9]
    中华人民共和国卫生部. 职业卫生标准制定指南第5部分: 生物材料中化学物质测定方法: GBZ/T 210.5-2008[S]. 北京: 人民卫生出版社, 2008.
    [10]
    阮征, 王晗, 唐红芳, 等. 顶空-气相色谱法检测职业人群尿丙酮和丁酮研究[J]. 预防医学, 2022, 34(1): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYFX202201008.htm
    [11]
    李思燕, 钟权锦, 蔡小璇, 等. 利用溶剂型原辅材料挥发组分识别职业病危害因素[J]. 中国职业医学, 2020, 47(1): 96-99. https://www.cnki.com.cn/Article/CJFDTOTAL-XYYX202001027.htm
    [12]
    蔡小璇, 钟新光, 彭建梅, 等. 血清中丙酮和3种醇类的气相色谱内标同时测定法[J]. 环境与健康杂志, 2019, 36(4): 369-372. https://www.cnki.com.cn/Article/CJFDTOTAL-HJYJ201904025.htm
    [13]
    夏红芳, 梅勇, 张鑫, 等. 尿中二氯甲烷的顶空固相微萃取-气相色谱测定方法[J]. 中国卫生检验杂志, 2016, 26(1): 32-34. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWJZ201601011.htm
    [14]
    夏立先, 梅娟, 卢方平. 卤代烃发生消去反应实验的探索[J]. 化学教学, 2011(6): 49-50. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJX201106023.htm
    [15]
    王海滨, 刘畅, 宗敬忠, 等. 用焦亚硫酸钠替代亚硫酸钠脱氯的可行性分析[J]. 氯碱工业, 2007(8): 16. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGY200708004.htm
  • Related Articles

    [1]HE Zongjian, ZHOU Ping, QING Zhicong, ZHU Dingji, QIN Limei, NING Panliang. Simultaneous determination of glyphosate, glufosinate, diquat, and paraquat in whole blood and urine by liquid chromatography mass spectrometry[J]. Occupational Health and Emergency Rescue, 2025, 43(1): 106-110. DOI: 10.16369/j.oher.issn.1007-1326.2025.240341
    [2]XIE Yuxuan, WANG Zihao, LI Tiandi, LIU Fen, GUO Xiang. Determination of fenthion and its main metabolites in plasma by ultra-performance liquid chromatography[J]. Occupational Health and Emergency Rescue, 2024, 42(5): 660-665. DOI: 10.16369/j.oher.issn.1007-1326.2024.05.019
    [3]ZHANG Jing, WANG Xiang, ZHAO Zhonglin, GUO Ying, WU Jiang. Determination of four amide compounds in urine by liquid-liquid extraction gas chromatography[J]. Occupational Health and Emergency Rescue, 2023, 41(4): 503-507. DOI: 10.16369/j.oher.issn.1007-1326.2023.04.022
    [4]HE Zongjian, ZHOU Wuwang, LI Yan, XIAO Mei, ZHU Jie. Determination of urinary trichloroacetic acid by headspace gas chromatography mass spectrometry after controlling chloroform interference[J]. Occupational Health and Emergency Rescue, 2023, 41(3): 366-369. DOI: 10.16369/j.oher.issn.1007-1326.2023.03.021
    [5]GU Wenjian, CHEN Zhiyan, ZHANG Bin, XUE Huaxing, YU Shiju, LIU Siyuan, LIU Xiaoying. Simultaneous determination of 5 acid radical ions in air of workplaces by ion chromatography[J]. Occupational Health and Emergency Rescue, 2021, 39(6): 717-719. DOI: 10.16369/j.oher.issn.1007-1326.2021.06.024
    [6]HE Zongjian, ZHU Dingji, ZHU Jie, HUANG Kejian. Rapid detection of paraquat and diquat in whole blood and urine by gas chromatography-mass spectrometry[J]. Occupational Health and Emergency Rescue, 2020, 38(4): 419-423. DOI: 10.16369/j.oher.issn.1007-1326.2020.04.025
    [7]ZHANG Xuemei, CAO Siyu, TIAN He. Study on methods for determination of amyl alcohol in air of workplaces by dissolved desorption-GC[J]. Occupational Health and Emergency Rescue, 2018, 36(1): 59-61. DOI: 10.16369/j.oher.issn.1007-1326.2018.01.018
    [8]SHEN Dongxu, WU Zhenglong, WU Guobin, PENG Xiaomei, SHEN Weikang. Simultaneous determination of 15 organic compounds in the air of workplace by gas chromatography[J]. Occupational Health and Emergency Rescue, 2017, 35(6): 503-506. DOI: 10.16369/j.oher.issn.1007-1326.2017.06.003
    [9]LING Weijie, RONG Weifeng, LIU Yimin. Determination of ethylene oxide by dissolved desorption-GC with sampling charcoal tube containing hydrobromic acid[J]. Occupational Health and Emergency Rescue, 2015, 33(3): 193-197. DOI: 10.16369/j.oher.issn.1007-1326.2015.03.017
    [10]WU Jian, LI Xiao-juan, ZHOU Chang-mei, ZHU Bao-li. Determination of hexamethylene diisocyanate in polyurethane coatings by gas chromatography with capillary column[J]. Occupational Health and Emergency Rescue, 2014, 32(4): 229-230,236.

Catalog

    Article views (65) PDF downloads (29) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return